
Assignment 3

Probability Theory II

(EN.553.721, Spring 2025)

Assigned: March 6, 2025 Due: 11:59pm EST, March 17, 2025

Solve any three out of the four problems. If you solve more, we will grade the first three
solutions you include. Each problem is worth an equal amount towards your grade.

Submit solutions in LATEX. Write in complete sentences. Include and justify all steps of your
arguments, but avoid writing excessive explanation that is not contributing to your solution.

Keep in mind the late submission policy: you may use a total of five late days for homework
submissions over the course of the semester without penalty. If you need an extension
beyond these, you must ask me 48 hours before the due date of the homework and have an
excellent reason. After you have used up these late days, further late assignments will be
penalized by 20% per day they are late.

For some of these problems, you might find it useful to watch the recorded lectures on
martingales if you haven’t yet.

Problem 1 (Martingales for random walks). Let Xi ∼ Unif({±1}) be i.i.d., and let Sn =
∑n
i=1Xi

with S0 = 0 be the usual simple random walk.

1. Let T := min{n : Sn = a} be the hitting time of some a > 0. Using the optional
stopping theorem, show that ET = ∞.

2. Using Doob’s martingale convergence theorem, show that T <∞ almost surely.

(Hint: Rephrase this conclusion as the convergence almost surely of a suitable mar-
tingale.)

3. Let λ ∈ R and

Mn := exp(λSn)
cosh(λ)n

.

Show that Mn is a martingale.

4. Using the optional stopping theorem, derive a formula for f(z) = EzT valid for all
0 ≤ z ≤ 1. Note that, by our recent discussion in class, the Taylor series expansion of
this function contains the values of P[T = k] for all k ≥ 0. (You are not required to
derive these.)
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Problem 2 (Time to observe a sequence). Let a1, . . . , aN ∈ {0,1} be fixed, and let X1, X2, . . . ∼
Unif({0,1}) be i.i.d. random variables. In this problem, you will study the time required to
see the sequence (a1, . . . , aN) in the random sequence (X1, X2, . . . ):

T :=min{n : n ≥ N,Xn = aN , Xn−1 = aN−1, . . . , Xn−N+1 = a1}.

Consider a Casino where a countable number of Gamblers 1,2, . . . bet on the outcome of the
Xn at each time n. Gambler i bets Bi,n,0 on the outcome being Xn = 0 at time n, and Bi,n,1
on the outcome being Xn = 1 at time n. At each time n, almost surely only a finite number
of the Gamblers make a non-zero bet. If Xn = 0, then the Casino’s fortune increases by Bi,n,1
for each i and decreases by Bi,n,0 for each i, and Gambler i’s fortune increases by Bi,n,0 and
decreases by Bi,n,1; if Xn = 1, the same happens with 0 and 1 switched. Write (Gi,n)n≥0 for
the fortune of Gambler i at each time.

1. Suppose that the processes (Bi,n,s)n for each i ≥ 1, s ∈ {0,1} are predictable with
respect to the σ -algebra Fn = σ(X1, . . . , Xn). Define the net profit of the Casino from
the bets made at time n as:

Y0 := 0,

Yn :=
∑
i≥1

1{Xn = 0}(Bi,n,1 − Bi,n,0)+
∑
i≥1

1{Xn = 1}(Bi,n,0 − Bi,n,1).

Define the net profit up to time n as:

Mn :=
n∑
j=1

Yj.

Show that Mn is a martingale.

2. The Gamblers play strategies similar to but slightly different from the martingale bet-
ting strategy from class. Each Gambler starts with a fortune of Gi,0 = 1. Gambler 1
bets all of their money on Xi = ai, until either losing and stopping or leaving with a
fortune of 2N :

B1,n,s := 1{1 ≤ n ≤ N,X1 = a1, . . . , Xn−1 = an−1, s = an} · 2n−1.

The other Gamblers j ≥ 2 play the same strategy, but starting at time j:

Bj,n,s := 1{j ≤ n ≤ N + j − 1, Xj = a1, . . . , Xj+n−2 = an−1, s = an} · 2n−j.

Suppose that N = 2 and (a1, a2) = (0,1). Give a formula for the value of MT in terms
of T for each T ≥ 2. Compute E[MT ] using the optional stopping theorem. Use that to
compute E[T].

3. Repeat Part 2 for N = 6 and (a1, a2, a3, a4, a5, a6) = (1,1,0,0,1,1).

4. Describe a general formula for E[T] in terms of (a1, . . . , aN). For a given length N ,
find a sequence that makes E[T] as large as possible and another that makes E[T] as
small as possible.
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Problem 3 (Product martingales). Let X1, X2, . . . be independent random variables such that
Xi ≥ 0 almost surely and EXi = 1 for all i. We have seen that

M0 := 1,

Mn :=
n∏
i=1

Xi for n ≥ 1

defines a martingale. Define si := E
√
Xi.

1. Show that 0 < si ≤ 1 for all i.

2. Show that there exists a random variable M∞ ≥ 0 such that Mn → M∞ almost surely.

3. Show that if
∏∞
i=1 si = 0, then M∞ = 0 almost surely.

(Hint: Consider another martingale formed by suitably normalizing
∏n
i=1

√
Xi.)

4. Show that if
∏∞
i=1 si > 0, then Mn → M∞ in L1, and therefore EM∞ = 1 and it is not the

case that M∞ = 0 almost surely.

(Hint: Use the same martingale from Part 3 and a suitable martingale maximal in-
equality to establish that supnMn < ∞ almost surely. Then, apply dominated conver-
gence.)

Problem 4 (Sums of random length). Let X1, X2, . . . be i.i.d. random variables with E|Xi| <∞
and let Sn :=

∑n
i=1Xi. Let N ∈ N be a random variable independent of the Xi having EN <∞.

1. Show that ESN = E
∑N
i=1Xi = EN · EX1.

(Hint: Write SN =
∑∞
i=1Xi1{i ≤ N}. Handle the case Xi ≥ 0 first.)

2. Show that if further Xi ≥ 0 almost surely, Xi is not almost surely zero, and EN = ∞,
then the above identity still holds, in the sense that ESN = ∞.

3. Show that, if EX2
i < ∞, then E(SN −NEX1)2 = EN · Var[X1] and conclude that, if also

EN2 <∞, then ES2
N = EN · EX2

1 + E[N(N − 1)] · (EX1)2.

(Hint: Reduce to the case EX1 = 0. Use the L2 martingale convergence theorem.)

4. Calculate the mean and variance of the sum of the rolls of a six-sided die made until a
6 is rolled.
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