
Assignment 1

Probability Theory II

(EN.553.721, Spring 2025)

Assigned: January 29, 2025 Due: 11:59pm EST, February 10, 2025

Solve any three out of the four problems. If you solve more, we will grade the first three
solutions you include. Each problem is worth an equal amount towards your grade.

Submit solutions in LATEX. Write in complete sentences. Include and justify all steps of your
arguments, but avoid writing excessive explanation that is not contributing to your solution.

Keep in mind the late submission policy: you may use a total of five late days for homework
submissions over the course of the semester without penalty. If you need an extension
beyond these, you must ask me 48 hours before the due date of the homework and have an
excellent reason. After you have used up these late days, further late assignments will be
penalized by 20% per day they are late.

A few problems below involve the exponential probability measure. This, denoted Exp(λ), is
the measure with density ρ(x) = 1{x ≥ 0}λ exp(−λx). We will see it soon in lecture.

Problem 1 (Law of large numbers). This problem clarifies some details surrounding the weak
law of large numbers (WLLN) as well as convergence in probability more generally.

1. Call a probability measure µ on R (endowed with the Borel σ -algebra) deterministic if,
for all measurable A, we have µ(A) ∈ {0,1}. Show that µ is deterministic if and only
if µ = δx for some x ∈ R, i.e., if and only if µ(A) = 1{x ∈ A} for all measurable A.

2. Let X1, X2, . . . ∈ R be random variables and c ∈ R a constant. Show that Xn → c in
probability if and only if Xn ⇒ c in distribution.

3. Let µ be the probability measure on R with density ρ(x) = 1{x ≥ 0} 2
π(1+x2) . Show that,

if X1, X2, . . . ∼ µ are i.i.d., then E|Xi| = ∞, and also that lim infn→∞ P[ 1
n
∑n
i=1Xi > K] > 0

for any fixed K > 0. Conclude that the WLLN does not apply to these random variables,
in the sense that 1

n
∑n
i=1Xi does not converge in probability to any deterministic c ∈ R.

(Hint: Consider the probability that one of the Xi is greater than Kn.)

4. Let Z :=
∑∞
k=2

1
k2 logk < ∞. Let µ be the probability measure on Z assigning probability

masses µ({(−1)kk}) = 1
Z ·

1
k2 logk for each k ≥ 2 and µ({`}) = 0 for all other ` ∈ Z not

1



of the form (−1)kk for some k ≥ 2. Let X1, X2, . . . ∼ µ be i.i.d. Prove that E|Xi| = ∞,
and yet that there is a constant c ∈ R such that 1

n
∑n
i=1Xi → c in probability, whereby

the assumption E|Xi| <∞ in the WLLN is not always necessary.

(Hint: You may either follow the truncation proof of the WLLN, or use characteristic
functions and Part 2. In the latter case, you may use the Taylor series estimate on
the function t , exp(it) given in Klenke, Lemma 15.31, and you should expand the
characteristic function of Xi as a series in k and truncate it appropriately.)

Problem 2 (Stirling’s asymptotic). In this problem, you will show that the central limit the-
orem (CLT) implies Stirling’s approximation for the factorial (a purely deterministic state-
ment!). Let X1, . . . , Xn ∼ Exp(1) be i.i.d. and let Sn :=

∑n
i=1Xi.

1. Show that EXi = 1.

2. Show that, for each n ≥ 1, Sn has density

ρn(x) = 1{x ≥ 0} 1
(n− 1)!

xn−1 exp(−x).

(Hint: Use induction to compute the integrals involved.)

3. Show that

E
∣∣∣∣Sn −n√

n

∣∣∣∣ = 2 exp(−n)nn+1/2

n!
.

(Hint: Use the density of Sn from Part 2 to write the expectation as an integral. Split
the integral into two parts to handle the absolute value appearing. Then, use integra-
tion by parts. You should be able to avoid actually computing any complicated-looking
integrals.)

4. Use the CLT applied to the Xi to conclude that

lim
n→∞

n!√
2π exp(−n)nn+1/2 = 1.

You may use without proof that, in this situation, the CLT implies that E|Sn−n√
n | →

EN∼N (0,1)|N|, even though a priori the test function f(x) = |x| cannot be used in the
CLT. We will soon see some concentration inequalities that make this easy to deduce
from the kind of CLT we have seen so far.

Problem 3 (Central limit theorems). This problem clarifies a few details concerning the CLT
we have seen in class.

1. Suppose X1, X2, . . . are i.i.d. satisfying EXi = 0 and EX2
i = 1. Show that there does not

exist a random variable Z such that Ŝn := 1√
n
∑n
i=1Xi → Z in probability. Explain why

this does not contradict the CLT.

(Hint: Show that, if this convergence did happen, then Ŝ2n − Ŝn → 0 in probability.
Derive a contradiction by showing that this expression must instead converge in dis-
tribution to a (non-trivial) Gaussian random variable.)
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2. Show that there exists c > 0 such that the following holds for arbitrarily large n. Let
X1, . . . , Xn ∼ Unif({±1}) and N ∼N (0,1). Then,∣∣∣∣∣∣P

 1√
n

n∑
i=1

Xi ≤ 0

− P[N ≤ 0]

∣∣∣∣∣∣ ≥ c√
n
.

This shows that the error bound of the Berry-Esséen theorem is tight in general. You
may use Stirling’s asymptotic from Problem 2 even if you did not choose that problem
to solve.

(Hint: Consider even n.)

3. Construct a triangular array (Xi,n)1≤i≤n of independent but not identically distributed
random variables with EXi,n = 0, EX2

i,n = 1, and yet such that 1√
n
∑n
i=1Xi,n does not

converge in distribution toN (0,1). Your example shows that some further condition
(such as Lindeberg’s condition) is needed in a statement like the Lindeberg CLT.

(Hint: Use the Poisson limit theorem.)

Problem 4 (Extreme value theory). Let X1, X2, . . . be i.i.d. random variables (with law specified
in the parts below) and write Mn := maxni=1Xi. As a general hint, in all cases, look for a
formula for P[Mn ≤ t].

1. Suppose Xi ∼ Unif([0,1]). Show that n(1−Mn)⇒ M , where Law(M) = Exp(1).

2. Suppose Xi ∼ Exp(1). Show that (Mn − logn)⇒ M , where M is a random variable with
density exp(−x − exp(−x)) (the nested exponential is not a typo, and the density is
over all x ∈ R, not just non-negative x).

3. This problem is in a different setting, preparing for the last part. Show that, if N ∼
N (0,1), then, for any t ≥ 0,

P[N ≥ t] ≤ 1
2
exp

(
−t

2

2

)
.

(Hint: Write out the integral, change variables to make it an integral from 0 to ∞, and
expand the square.)

4. Suppose in the original setting that Xi ∼ N (0,1). Using Part 3, show that, for any
ε > 0,

lim
n→∞

P[Mn ≤
√
(2+ ε) logn] = 1.

You do not need to prove the other side here, but you should know and remember

forever that, in this case, Mn/
√

2 logn→ 1 in probability.
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