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Motivation

How to assess the asymptotic computational difficulty of hypothesis test-
ing in high dimension?

We want to know when we can distinguish with high probability between:

e Y ~ Qy (null, unstructured, symmetric)

e Y ~ Py (planted, containing a signal)

for Q,,, P, over RN=N(M) for n — o0, N growing with n.

What are useful summaries of difficulty and how can we compute them?

Likelihood Ratio

Ignoring computational constraints, a good test should be:

maximize Ep, p(Y)
subject to Fg,p(Y)? <1

Rewriting in L2(Qy),
maximize <p,%> in L2(Qyn)
subject to ||pll¢ <1 in L?(Qy)

whose optimizer is the (normalized) likelihood ratio:
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Neyman-Pearson Lemma (1933)

Thresholded likelihood ratio is an optimal test for any fixed tolerance of
Type I and II errors.

Le Cam’s Second Moment Method (1960s)

If ||L»n]l is bounded as n — oo, no test (efficient or not) can distinguish.

Low-Degree Method

To incorporate computational constraints, take {low-degree polynomials} ~
{efficient algorithms}:

maximize Ep, p(Y)
subject to Eq, p(Y)? <1,
p(Y)eR[Y]-p

By the same token as above, optimizer is the (normalized) low-degree like-
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for P=D the orthogonal projector to R[Y ]<p.

Low-Degree Conjecture (2017-2018)

If ||L:P] is bounded as n — o, no test can distinguish in time ¢© P (1)),

But when can we actually carry out this computation?

Morris Class of Exponential Families

Any probability measure pg on R generates a natural exponential family (NEF),
dpo(x) o< e%dpg(x).
We can also reparametrize by the mean: y = pu(0) = Ex~pylx] ~ Pu = Po-
The variance is a function of the mean,
V() = Var, 5 [x],
and simple families have simple variance functions, in particular low-degree polynomial variance

functions. Morris (1982-1983) fully characterized the NEFs with quadratic variance function (NEF-QVEFs).

Morris’ Classification of NEF-QVFs (1982)

All natural exponential families with quadratic variance function are one of the following or an affine
transformation thereof:

Name dpo(x) Support V(u)
Gaussian (variance ¢ > 0) \/ﬁexp(—ﬁxz)dx R o°
Poisson %% Z>0 H
Gamma (shape « > 0) ﬁx“‘le_xdx (0, +00) éuz
Binomial (m trials) 2%(?2) 0,...,m} —%uz + U
Negative Binomial (m successes) m%(’”f’:_l) 70 %uz + U

Hyperbolic Secant (shape r > 0) %sech(rrx/Z) (e.g.) R %“2 iy

Computing ||L:P||

Prior work: Gaussian models. Using orthogonal (Hermite) polynomials, can treat the setup:
e Under Q©,,, Y ~ N (O, 1).
e Under Py, draw « ~ P a signal and take Y ~ N (x, I).

This yields an overlap formula:

ILEPI12 = F exp=P(a!, x?))
wl’wZ

Here ! ~ P are i.i.d. copies, and expSD (t) = ZIkD:O tk /k! is the truncated Taylor series. Such a formula
is very convenient to work with! It reduces the high-dimensional expectation to a scalar one.

Suppose O, and P, are products of distributions
in an NEF-QVF, with

e Oy has coordinates with means p;, variances
of = V(yy),

Examples of the f(t) = f(t;v2):

v=1.0

v =0.75

v=20.5

] v=0.25

{ == v = 0 (Exponential)
v=—-1/4
v=-1/3
v=-—1/2

v=-—1

e [P;; has coordinates with means x; for x ~ P.

Suppose V(i) = vou? + viu + vg. Then,

Channel Monotonicity

From the picture: f(t;v»>) is monotone in v». In fact...

The truncated Taylor series £f=P(t;v>) are monotone in v>.

Recalling that, from the low-degree conjecture, an expectation of f=P(-;v»)
governs the cost of testing, we find channel monotonicity:

With a fixed distribution of z-scores of the planted model signal (x ~ P)
with respect to the null model,

Bernoulli > Binomial > Gaussian = Poisson > Exponential

-€ >

harder easier

Exploration Before Inference

Apply the same tools to a non-Gaussian spiked matrix model. In Gaussian
spiked matrix models, an optimal testing statistic is

i Amax

In general, we need F a transcendental function tailored to the noise law:
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We consider the specific hyperbolic secant noise distribution:

—— Hyperbolic secant density
Laplace density

Need high entrywise degree (approximating F) to test ~ we can confuse
low-degree polynomials by a mixture with heavy-tailed noise.

General prediction: Low-degree polynomials have trouble “exploring the
data” (e.g., kernel density estimation, adaptive preprocessing, calibration).
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