# HYPOTHESIS TESTING WITH LOW-DEGREE POLYNOMIALS IN THE MORRIS CLASS OF EXPONENTIAL FAMILIES Dmitriy Kunisky (New York University)

## Motivation

How to assess the asymptotic computational difficulty of hypothesis test**ing** in high dimension?

We want to know when we can distinguish with high probability between:

- $Y \sim \mathbb{Q}_n$  (null, unstructured, symmetric)
- $Y \sim \mathbb{P}_n$  (planted, containing a signal)

for  $\mathbb{Q}_n$ ,  $\mathbb{P}_n$  over  $\mathbb{R}^{N=N(n)}$  for  $n \to \infty$ , *N* growing with *n*.

What are useful **summaries** of difficulty and how can we compute them?

#### Likelihood Ratio

Ignoring computational constraints, a good test should be:

maximize  $\mathbb{E}_{\mathbb{P}_n} p(\mathbf{Y})$ subject to  $\mathbb{E}_{\mathbb{O}_n} p(\mathbf{Y})^2 \le 1$ 

Rewriting in  $L^2(\mathbb{Q}_n)$ ,

maximize  $\langle p, \frac{d\mathbb{P}_n}{d\mathbb{Q}_n} \rangle$  in  $L^2(\mathbb{Q}_n)$ subject to  $\|p\|^2 \le 1$  in  $L^2(\mathbb{Q}_n)$ 

whose optimizer is the (normalized) **likelihood ratio**:

$$p^{\star}(\mathbf{Y}) = \frac{d\mathbb{P}_n}{\underbrace{d\mathbb{Q}_n}_{L_n(\mathbf{Y})}} /$$

$$\frac{\left\|\frac{d\mathbb{P}_n}{d\mathbb{Q}_n}\right\|}{d\mathbb{Q}_n}$$

Neyman-Pearson Lemma (1933)

Thresholded likelihood ratio is an optimal test for any fixed tolerance of Type I and II errors.

Le Cam's Second Moment Method (1960s)

If  $||L_n||$  is bounded as  $n \to \infty$ , no test (efficient or not) can distinguish.

#### **Low-Degree Method**

To incorporate computational constraints, take {low-degree polynomials}  $\approx$ {efficient algorithms}:

maximize 
$$\mathbb{E}_{\mathbb{P}_n} p(\mathbf{Y})$$
  
subject to  $\mathbb{E}_{\mathbb{Q}_n} p(\mathbf{Y})^2 \leq 1$ ,  
 $p(\mathbf{Y}) \in \mathbb{R}[\mathbf{Y}]_{\leq D}$ 

By the same token as above, optimizer is the (normalized) low-degree likelihood ratio

$$p^{\star}(\mathbf{Y}) = \underbrace{\mathcal{P}^{\leq D} \frac{d\mathbb{P}_{n}}{d\mathbb{Q}_{n}}(\mathbf{Y})}_{L_{n}^{\leq D}(\mathbf{Y})} / \underbrace{\left\| \mathcal{P}^{\leq D} \frac{d\mathbb{P}_{n}}{d\mathbb{Q}_{n}} \right\|}_{\text{objective value}}$$

for  $\mathcal{P}^{\leq D}$  the orthogonal projector to  $\mathbb{R}[Y]_{\leq D}$ .

Low-Degree Conjecture (2017-2018)

If  $||L_n^{\leq D}||$  is bounded as  $n \to \infty$ , no test can distinguish in time  $e^{\tilde{O}(D(n))}$ .

But when can we actually carry out this computation?

## Morris Class of Exponential Families

Any probability measure  $\rho_0$  on  $\mathbb{R}$  generates a *natural exponential family (NEF)*,

$$d\rho_{\theta}(x) \propto e^{\theta x} d\rho_0(x).$$

We can also reparametrize by the mean:  $\mu = \mu(\theta) = \mathbb{E}_{X \sim \rho_{\theta}}[X] \rightsquigarrow \widetilde{\rho}_{\mu} = \rho_{\theta}$ .

The variance is a function of the mean,

$$V(\boldsymbol{\mu}) = \operatorname{Var}_{\boldsymbol{\chi} \sim \widetilde{\rho}_{\boldsymbol{\mu}}}[\boldsymbol{\chi}],$$

and **simple families have simple variance functions**, in particular low-degree polynomial variance functions. Morris (1982-1983) fully characterized the NEFs with quadratic variance function (NEF-QVFs).

#### **Morris' Classification of NEF-QVFs (1982)**

All natural exponential families with quadratic variance function are one of the following or an affine transformation thereof:

| Name                                | $d\rho_0(x)$                                                   | Support               |
|-------------------------------------|----------------------------------------------------------------|-----------------------|
| Gaussian (variance $\sigma^2 > 0$ ) | $\frac{1}{\sqrt{2\pi\sigma^2}}\exp(-\frac{1}{2\sigma^2}x^2)dx$ | $\mathbb{R}$          |
| Poisson                             | $\frac{1}{e}\frac{1}{x!}$                                      | $\mathbb{Z}_{\geq 0}$ |
| Gamma (shape $\alpha > 0$ )         | $\frac{1}{\Gamma(\alpha)} x^{\alpha-1} e^{-x} dx$              | $(0, +\infty)$        |
| Binomial ( <i>m</i> trials)         | $\frac{1}{2^m}\binom{m}{x}$                                    | $\{0,\ldots,m\}$      |
| Negative Binomial ( $m$ successes)  | $\frac{1}{2^{m+x}} \begin{pmatrix} x+m-1 \\ x \end{pmatrix}$   | $\mathbb{Z}_{\geq 0}$ |
| Hyperbolic Secant (shape $r > 0$ )  | $\frac{1}{2}\operatorname{sech}(\pi x/2)$ (e.g.)               | $\mathbb{R}$          |

## Computing $||L_n^{\leq D}||$

Prior work: Gaussian models. Using orthogonal (Hermite) polynomials, can treat the setup:

- Under  $\mathbb{Q}_n$ ,  $Y \sim \mathcal{N}(0, I)$ .
- Under  $\mathbb{P}_n$ , draw  $\boldsymbol{x} \sim \mathcal{P}$  a *signal* and take  $\boldsymbol{Y} \sim \mathcal{N}(\boldsymbol{x}, \boldsymbol{I})$ .

This yields an **overlap formula**:

$$\|L_n^{\leq D}\|^2 = \mathop{\mathbb{E}}_{x^1,x^2} \exp^{\leq D}(\langle x^1,x^2\rangle)$$

Here  $x^i \sim \mathcal{P}$  are i.i.d. copies, and  $\exp^{\leq D}(t) = \sum_{k=0}^{D} t^k / k!$  is the truncated Taylor series. Such a formula is **very convenient to work with!** It reduces the high-dimensional expectation to a scalar one.

#### **Theorem 1: Generalization to NEF-QVFs**

Suppose  $\mathbb{Q}_n$  and  $\mathbb{P}_n$  are products of distributions in an NEF-QVF, with

- $\mathbb{Q}_n$  has coordinates with means  $\mu_i$ , variances  $\sigma_i^2 = V(\mu_i),$
- $\mathbb{P}_n$  has coordinates with means  $x_i$  for  $x \sim \mathcal{P}$ .

Suppose  $V(\mu) = v_2 \mu^2 + v_1 \mu + v_0$ . Then,

$$\begin{split} r(x^{1}, x^{2}) &\coloneqq \sum_{i=1}^{N} \frac{x_{i}^{1} - \mu_{i}}{\sigma_{i}} \cdot \frac{x_{i}^{2} - \mu_{i}}{\sigma_{i}} \\ f(t) &\coloneqq (1 - v_{2}t)^{-1/v_{2}}, \\ \|L_{n}^{\leq D}\|^{2} &\leq \sum_{x^{1}, x^{2}} \left[ f^{\leq D}(r(x^{1}, x^{2})) \right]. \end{split}$$



**⊮T<sub>E</sub>X** TikZ**poster**