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Motivation

How to assess the asymptotic computational difficulty of hypothesis test-

ing in high dimension?

We want to know when we can distinguish with high probability between:

• Y ∼ Qn (null, unstructured, symmetric)

• Y ∼ Pn (planted, containing a signal)

for Qn,Pn over RN=N(n) for n→∞, N growing with n.

What are useful summaries of difficulty and how can we compute them?

Likelihood Ratio

Ignoring computational constraints, a good test should be:

maximize EPnp(Y )
subject to EQnp(Y )

2 ≤ 1

Rewriting in L2(Qn),

maximize
〈
p, dPndQn

〉
in L2(Qn)

subject to ‖p‖2 ≤ 1 in L2(Qn)

whose optimizer is the (normalized) likelihood ratio:

p?(Y ) = dPn
dQn

(Y )︸ ︷︷ ︸
Ln(Y )

/ ∥∥∥∥dPndQn

∥∥∥∥︸ ︷︷ ︸
objective value

Neyman-Pearson Lemma (1933)

Thresholded likelihood ratio is an optimal test for any fixed tolerance of

Type I and II errors.

Le Cam’s Second Moment Method (1960s)

If ‖Ln‖ is bounded as n→∞, no test (efficient or not) can distinguish.

Low-Degree Method

To incorporate computational constraints, take {low-degree polynomials} ≈
{efficient algorithms}:

maximize EPnp(Y )
subject to EQnp(Y )

2 ≤ 1,
p(Y ) ∈ R[Y ]≤D

By the same token as above, optimizer is the (normalized) low-degree like-

lihood ratio

p?(Y ) = P≤DdPn
dQn

(Y )︸ ︷︷ ︸
L≤Dn (Y )

/ ∥∥∥∥P≤DdPndQn

∥∥∥∥︸ ︷︷ ︸
objective value

for P≤D the orthogonal projector to R[Y ]≤D.

Low-Degree Conjecture (2017-2018)

If ‖L≤Dn ‖ is bounded as n→∞, no test can distinguish in time eÕ(D(n)).

But when can we actually carry out this computation?

Morris Class of Exponential Families

Any probability measure ρ0 on R generates a natural exponential family (NEF),

dρθ(x)∝ eθxdρ0(x).

We can also reparametrize by the mean: µ = µ(θ) = Ex∼ρθ[x]� ρ̃µ = ρθ.

The variance is a function of the mean,

V(µ) = Varx∼ρ̃µ[x],

and simple families have simple variance functions, in particular low-degree polynomial variance

functions. Morris (1982-1983) fully characterized the NEFs with quadratic variance function (NEF-QVFs).

Morris’ Classification of NEF-QVFs (1982)

All natural exponential families with quadratic variance function are one of the following or an affine

transformation thereof:

Name dρ0(x) Support V(µ)

Gaussian (variance σ2 > 0) 1√
2πσ2

exp(− 1
2σ2x2)dx R σ2

Poisson 1
e

1
x! Z≥0 µ

Gamma (shape α > 0) 1
Γ(α)x

α−1e−xdx (0,+∞) 1
αµ

2

Binomial (m trials) 1
2m

(
m
x

)
{0, . . . ,m} − 1

mµ
2 + µ

Negative Binomial (m successes) 1
2m+x

(
x+m−1
x

)
Z≥0

1
mµ

2 + µ

Hyperbolic Secant (shape r > 0) 1
2 sech(πx/2) (e.g.) R 1

rµ
2 + r

Computing ‖L≤Dn ‖

Prior work: Gaussian models. Using orthogonal (Hermite) polynomials, can treat the setup:

• Under Qn, Y ∼N (0,I).

• Under Pn, draw x ∼ P a signal and take Y ∼N (x,I).

This yields an overlap formula:

‖L≤Dn ‖2 = E
x1,x2

exp≤D(〈x1,x2〉)

Here xi ∼ P are i.i.d. copies, and exp≤D(t) =
∑D
k=0 t

k/k! is the truncated Taylor series. Such a formula

is very convenient to work with! It reduces the high-dimensional expectation to a scalar one.

Theorem 1: Generalization to NEF-QVFs

SupposeQn and Pn are products of distributions

in an NEF-QVF, with

• Qn has coordinates with means µi, variances

σ2
i = V(µi),

• Pn has coordinates with means xi for x ∼ P.

Suppose V(µ) = v2µ2 + v1µ + v0. Then,

r(x1,x2) :=
N∑
i=1

x1
i − µi
σi

·
x2
i − µi
σi

f(t) := (1− v2t)−1/v2,

‖L≤Dn ‖2 ≤ E
x1,x2

[
f≤D(r(x1,x2))

]
.

Examples of the f(t) = f(t;v2):
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Channel Monotonicity

From the picture: f(t;v2) is monotone in v2. In fact...

Theorem 2: Truncated Monotonicity

The truncated Taylor series f≤D(t;v2) are monotone in v2.

Recalling that, from the low-degree conjecture, an expectation of f≤D(·;v2)
governs the cost of testing, we find channel monotonicity:

With a fixed distribution of z-scores of the planted model signal (x ∼ P)

with respect to the null model,

Bernoulli ≥ Binomial ≥ Gaussian = Poisson ≥ Exponential

harder easier

Exploration Before Inference

Apply the same tools to a non-Gaussian spiked matrix model. In Gaussian

spiked matrix models, an optimal testing statistic is · · ·· · ·
· · ·

� λmax


 · · ·· · ·
· · ·




In general, we need F a transcendental function tailored to the noise law: · · ·· · ·
· · ·

� λmax


 F(·) F(·) F(·)F(·) F(·) F(·)
F(·) F(·) F(·)




We consider the specific hyperbolic secant noise distribution:
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Hyperbolic secant density

Laplace density

Need high entrywise degree (approximating F ) to test � we can confuse

low-degree polynomials by a mixture with heavy-tailed noise.

General prediction: Low-degree polynomials have trouble “exploring the

data” (e.g., kernel density estimation, adaptive preprocessing, calibration).
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