Tight Frames and Degree 4 Sum-of-Squares over the Hypercube

Dmitriy Kunisky, joint with Afonso S. Bandeira

Motivation

Several interesting problems (MaxCut, Grothendieck problem, $\mathbb{Z} / 2 \mathbb{Z}$ synchronization, statistical physics models) can be written as optimization of quadratic forms over the hypercube, or optimization of linear functions over the cut polytope:

$$
\mathbf{M}(\boldsymbol{W})=\max _{\boldsymbol{x} \in\{ \pm 1\}^{N}} \boldsymbol{x}^{\top} \boldsymbol{W} \boldsymbol{x}=\max _{\boldsymbol{X} \in \mathscr{C} N}\langle\boldsymbol{W}, \boldsymbol{X}\rangle,
$$

$\mathscr{C}^{N}=\operatorname{conv}\left(\left\{\boldsymbol{x} \boldsymbol{x}^{\top}: \boldsymbol{x} \in\{ \pm 1\}^{N}\right\}\right)$
$=$ degree 2 moments of distributions over $\{ \pm 1\}^{N}$.
Classical relaxations of $\mathrm{M}(\boldsymbol{W})$ (Goemans-Williamson, Nesterov) optimize over the elliptope:
$\mathscr{E}^{N}=\mathscr{E}_{2}^{N}:=\left\{\boldsymbol{X} \in \mathbb{R}_{\text {sym }}^{N \times N}: \boldsymbol{X} \succeq 0, \operatorname{diag}(\boldsymbol{X})=\mathbf{1}\right\} \supseteq \mathscr{C}^{N}$.
Sum-of-squares relaxations of degree d compute bounds on $\mathrm{M}(\boldsymbol{W})$ by optimizing over sets \mathscr{E}_{d}^{N} of (partial) pseudomoment matrices, giving tighter relaxations as d increases:

$$
\mathscr{E}_{2}^{N} \supseteq \mathscr{E}_{4}^{N} \supseteq \cdots \supseteq \mathscr{E}_{2 N}^{N}=\mathscr{C}^{N} .
$$

\mathscr{E}_{2}^{N} is well-studied, but little is known about the geometry and optimization performance of \mathscr{E}_{d}^{N} for fixed $d>2$.
We introduce new techniques for describing \mathscr{E}_{4}^{N}, which give interesting structural results that appear to be difficult to obtain by existing means.

Factorizing Pseudomoments

It can be useful to describe a pseudomoment matrix as a Gram matrix (for rounding, rank-constrained numerics, and theoretical arguments). For the classical (degree 2) elliptope,

$$
\begin{aligned}
\mathscr{E}_{2}^{N} & =\left\{\boldsymbol{X} \in \mathbb{R}^{N \times N}: \boldsymbol{X} \succeq \mathbf{0}, \operatorname{diag}(\boldsymbol{X})=\mathbf{1}\right\} \\
& =\left\{\boldsymbol{X} \in \mathbb{R}^{N \times N}: X_{i j}=\left\langle\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right\rangle \text { where } \boldsymbol{v}_{i} \in \mathbb{S}^{r-1}\right\} .
\end{aligned}
$$

We do the same for degree 4 , where the answer is more subtle.
Definition. $\mathcal{B}(N, r)$ is the set of positive semidefinite $\mathbb{R}^{r N \times r N}$ block matrices where every diagonal block is \boldsymbol{I}_{r} and every offdiagonal block is symmetric:
$\mathcal{B}(N, r)=\left\{\begin{array}{ccccc}\boldsymbol{I}_{r} & \boldsymbol{S}_{\{1,2\}} & \boldsymbol{S}_{\{1,3\}} & \boldsymbol{S}_{\{1,4\}} & \boldsymbol{S}_{\{1,5\}} \\ \boldsymbol{S}_{\{1,2\}} & \boldsymbol{I}_{r} & \boldsymbol{S}_{\{2,3\}} & \boldsymbol{S}_{\{2,4\}} & \boldsymbol{S}_{\{2,5\}} \\ \boldsymbol{S}_{\{1,3\}} & \boldsymbol{S}_{\{2,3\}} & \boldsymbol{I}_{r} & \boldsymbol{S}_{\{3,4\}} & \boldsymbol{S}_{\{3,5\}} \\ \boldsymbol{S}_{\{1,4\}} & \boldsymbol{S}_{\{2,4\}} & \boldsymbol{S}_{\{3,4\}} & \boldsymbol{I}_{r} & \boldsymbol{S}_{\{4,5\}} \\ \boldsymbol{S}_{\{1,5\}} & \boldsymbol{S}_{\{2,5\}} & \boldsymbol{S}_{\{3,5\}} & \boldsymbol{S}_{\{4,5\}} & \boldsymbol{I}_{r}\end{array}\right\}$

Theorem 1: Gram Matrix Description of \mathscr{E}_{4}^{N} Membership

$\boldsymbol{X}=\left(\left\langle\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right\rangle\right)_{i, j=1}^{N} \in \mathscr{E}_{4}^{N}$ with $\boldsymbol{v}_{i} \in \mathbb{S}^{r-1}$ a spanning set if and only if there is $\boldsymbol{M} \in \mathcal{B}(N, r)$ with $\boldsymbol{v}^{\top} \boldsymbol{M} \boldsymbol{v}=N^{2}$, where \boldsymbol{v} is the concatenation of the \boldsymbol{v}_{i}. If $\boldsymbol{M}_{[j k]}$ are the blocks of M, the degree 4 pseudomoments may be recovered as
$\tilde{\mathbb{E}}\left[x_{i} x_{j} x_{k} x_{\ell}\right]=\boldsymbol{v}_{i}^{\top} \boldsymbol{M}_{[j k]} \boldsymbol{v}_{\ell}$.
$\|\boldsymbol{X}\| \leq N$ when
$\boldsymbol{X} \in \mathcal{B}(N, r)$, so v is a top eigen
vector of X.

Constraints from Complementarity and Sum-of-Squares Eagerness

Theorem 1 gives a new SDP describing membership in \mathscr{E}_{4}^{N}, different from the pseudomoment one. We examine this program through convex duality:

$$
\left\{\begin{array}{l}
\max \left\langle\boldsymbol{v} \boldsymbol{v}^{\top}, \boldsymbol{M}\right\rangle \\
\text { s.t. } \quad \boldsymbol{M} \succeq 0, \boldsymbol{M}_{[i i]}=\boldsymbol{I}_{r}, \boldsymbol{M}_{[i j]}=\boldsymbol{M}_{[i j]}^{\top}
\end{array}\right\}=\left\{\begin{array}{l}
\min \operatorname{Tr}(\boldsymbol{D}) \\
\text { s.t. } \boldsymbol{D} \succeq \boldsymbol{v} \boldsymbol{v}^{\top}, \boldsymbol{D}_{[i j]}=-\boldsymbol{D}_{[i j}^{\top}
\end{array}\right.
$$

While the primal problem is as hard as the pseudomoment extension problem, it is easy to match the optimal value in the dual problem using the partial transpose:

$$
\left(\boldsymbol{v} \boldsymbol{v}^{\top}\right)_{[i j]}=\boldsymbol{v}_{i} \boldsymbol{v}_{j}^{\top} \leadsto \mathrm{PT}\left(\boldsymbol{v} \boldsymbol{v}^{\top}\right)_{[i j]}=\boldsymbol{v}_{j} \boldsymbol{v}_{i}^{\top} .
$$

The partial transpose is studied in quantum information; its spectrum for a rank-one matrix is known exactly. We build a dual optimizer $\boldsymbol{D}^{*}:=\boldsymbol{v} \boldsymbol{v}^{\top}-\mathrm{P} \mathrm{\top}\left(\boldsymbol{v} \boldsymbol{v}^{\top}\right)+\boldsymbol{I}_{N} \otimes\left(\sum_{i=1}^{N} \boldsymbol{v}_{i} \boldsymbol{v}_{i}^{\top}\right)$, with $\operatorname{Tr}\left(\boldsymbol{D}^{*}\right)=N^{2}$. By complementarity, $\boldsymbol{M}^{*}\left(\boldsymbol{D}^{*}-\boldsymbol{v} \boldsymbol{v}^{\top}\right)=\mathbf{0}$, constraining \boldsymbol{M}^{*}.

Theorem 2: Gram Matrix Certificate Constraints

If $\boldsymbol{v}_{i} \in \mathbb{S}^{r-1}, \boldsymbol{v}$ is the concatenation of the $\boldsymbol{v}_{i}, \boldsymbol{V}$ has \boldsymbol{v}_{i} as columns, and $\boldsymbol{M}^{*} \in \mathcal{B}(N, r)$ with $\boldsymbol{v}^{\top} \boldsymbol{M}^{*} \boldsymbol{v}$, then all positive eigenvectors of \boldsymbol{M}^{*} lie in the subspace

$$
V_{S}=\left\{\operatorname{vec}(\boldsymbol{S V}): \boldsymbol{S} \in \mathbb{R}_{\text {sym }}^{r \times r}\right\} \subset \mathbb{R}^{r N} .
$$

The blocks of M^{*} control the pseudomoments, so we find pseudomoment identities.

Corollary: Strong Subspace Identities

If $\tilde{\mathbb{E}}$ is a degree 4 pseudoexpectation over $\{ \pm 1\}^{N}$, and \boldsymbol{P} is the projector to the range of $\tilde{\mathbb{E}}\left[\boldsymbol{x} \boldsymbol{x}^{\top}\right]$, then for all $i \in[N]$ and $p \in \mathbb{R}\left[x_{1}, \ldots, x_{N}\right]_{\leq 3}$,

$$
\tilde{\mathbb{E}}\left[x_{i} \boldsymbol{p}(\boldsymbol{x})\right]=\tilde{\mathbb{E}}\left[(\boldsymbol{P} \boldsymbol{x})_{i} p(\boldsymbol{x})\right] .
$$

These identities admit simple sum-of-squares proofs at degree 6, but seem difficult to prove without our methods at degree 4 -this is the phenomenon of eagerness.

Equiangular Tight Frame Gram Matrices are (Usually) in \mathscr{E}_{4}^{N}
Definition. Vectors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{N} \in \mathbb{R}^{r}$ form an equiangular tight frame (ETF) if:

1. (Unit Norm) $\left\|\boldsymbol{v}_{i}\right\|_{2}=1$.
2. (Tight Frame) $\sum_{i=1}^{N} \boldsymbol{v}_{i} \boldsymbol{v}_{i}^{\top}=\frac{N}{r} \boldsymbol{I}_{r}$.
3. (Equiangular) For any $i \neq \boldsymbol{j},\left|\left\langle\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right\rangle\right|=\mu$.

ETFs are rare and rigidly structured, with connections to strongly regular graphs, tight spherical designs, Steiner systems, and other exceptional combinatorial objects.

Theorem 3: Membership in \mathscr{E}_{4}^{N} of Equiangular Tight Frame Gram Matrices

If $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{N} \in \mathbb{S}^{r-1}$ form an ETF, and $\boldsymbol{X}=\left(\left\langle\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right\rangle\right)_{i, j=1}^{N}$ is the Gram matrix, then $\boldsymbol{X} \in \mathscr{E}_{4}^{N}$ if and only if $N<\frac{r(r+1)}{2}$.

We obtain the degree 4 pseudomoments explicitly by solving the subspace identities, and find that they are intricately structured and "fine-tuned" to satisfy positive semidefiniteness $\tilde{\mathbb{E}}\left[x_{i} x_{j} x_{k} x_{\ell}\right]=\frac{\frac{r(r-1)}{2}}{\frac{r(r+1)}{2}-N}\left(X_{i j} X_{k \ell}+X_{i k} X_{j \ell}+X_{i \ell} X_{j k}\right)-\frac{r^{2}\left(1-\frac{1}{N}\right)}{\frac{r(r+1)}{2}-N} \sum_{m=1}^{N} X_{i m} X_{j m} X_{k m} X_{\ell m}$ Some ETF Gram matrices (of simplex and Paley ETFs) provably belong to the difference se $\mathscr{E}_{4}^{N} \backslash \mathscr{C}^{N}$, and appear to be the first explicit examples of members of this set.

\downarrow
Degree 4 Pseudomoment Matrix

Applications

New sum-of-squares inequalities. The only known family of quadratic inequalities satisfied by degree 4 but not degree 2 pseudoexpectations appear to be the triangle inequalities,
$\left(x_{i}+x_{j}+x_{k}\right)^{2} \geq 1 \Leftrightarrow x_{i} x_{j}+x_{j} x_{k}+x_{i} x_{k} \geq-1$.
We show that the triangle inequalities are but the first of a larger family corresponding to maximal ETFs.

Violation of hypermetric inequalities. In the opposite direction, we also show that the similar inequalities

$$
\left(\sum_{i \in \mathcal{I}} x_{i}\right)^{2} \geq 1 \text { for }|\mathcal{I}| \geq 5,|\mathcal{I}| \text { odd }
$$

over \mathscr{C}^{N}, called hypermetric inequalities, are not satisfied by all degree 4 pseudoexpectations.

MaxCut integrality gaps. Extending our result on ETF to some other two-distance tight frames gives the value of the degree 4 sum-of-squares relaxation of MaxCut on associated strongly regular graphs (for example, Johnson and Hamming graphs). A direct computation of the MaxCut value shows that in fact these exhibit a small integrality gap between the true MaxCut value and the relaxation value:
MaxCut $=\left(1+\epsilon_{N}\right) \frac{|E|}{2}<\left(1+\epsilon_{N}+\Omega\left(\epsilon_{N}^{2}\right)\right) \frac{|E|}{2}=$ relaxation.

Questions for Future Work

Eagerness. Does the phenomenon of eagerness occur at higher degrees of sum-of-squares, or with other identities?

Factorizing SDPs. When can feasibility for a more gen eral SDP (sum-of-squares over other constraints, or entirely eral SDP (sum-of-squares over other constraints, or ent crely
different problems) be described by another SDP on the Gram different problems) be described by another SDP on the Gram slackness argument like ours give new constraints?

Random problems. We were motivated originally by relaxing the Sherrington-Kirkpatrick model, where $W_{i j} \sim_{\text {iid }} \mathcal{N}(0,1)$ This relates to whether $\boldsymbol{X} \in \mathscr{E}_{4}^{N}$ can have "most of its mass near a random subspace." The subspace identities preclude this in some sense, but are they strong enough?

References

[1] Peter G Casazza, Dan Redmond, and Janet C Tremain. "Real equiangular frames". In: Information Sciences and Systems, 2008. CISS 2008. 42nd Annual Conference on. IEEE. 2008, pp. 715-720
[2] Michel X Goemans and David P Williamson. "Improved approximation algorithms for maximum cut and satisfiability problems using [3] Gregg Jaeger. Quantum information. Springer, 2007.
[4] Monique Laurent. "Sums of squares, moment matrices and optimization over polynomias" In. Emerging applications of algebraic ge ometry. Springer, 2009, pp. 157-270.

