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Motivation

Several interesting problems (MaxCut, Grothendieck problem,

Z/2Z synchronization, statistical physics models) can be writ-

ten as optimization of quadratic forms over the hypercube, or

optimization of linear functions over the cut polytope:

M(W ) = max
x∈{±1}N

x>Wx = max
X∈CN

〈W ,X〉,

CN = conv({xx> : x ∈ {±1}N})
= degree 2 moments of distributions over {±1}N .

Classical relaxations of M(W ) (Goemans-Williamson, Nes-

terov) optimize over the elliptope:

E N = E N2 := {X ∈ RN×Nsym : X � 0,diag(X) = 1} ⊇ CN .

Sum-of-squares relaxations of degree d compute bounds on

M(W ) by optimizing over sets E Nd of (partial) pseudomoment

matrices, giving tighter relaxations as d increases:

E N2 ⊇ E N4 ⊇ · · · ⊇ E N2N = CN .

E N2 is well-studied, but little is known about the geometry and

optimization performance of E Nd for fixed d > 2.

We introduce new techniques for describing E N4 , which give

interesting structural results that appear to be difficult to

obtain by existing means.

Factorizing Pseudomoments

It can be useful to describe a pseudomoment matrix as a Gram

matrix (for rounding, rank-constrained numerics, and theo-

retical arguments). For the classical (degree 2) elliptope,

E N2 =
{
X ∈ RN×N : X � 0,diag(X) = 1

}
=
{
X ∈ RN×N : Xij = 〈vi,vj〉 where vi ∈ Sr−1

}
.

We do the same for degree 4, where the answer is more subtle.

Definition. B(N, r) is the set of positive semidefinite RrN×rN

block matrices where every diagonal block is Ir and every off-

diagonal block is symmetric:

B(N, r) =



Ir S{1,2} S{1,3} S{1,4} S{1,5}
S{1,2} Ir S{2,3} S{2,4} S{2,5}
S{1,3} S{2,3} Ir S{3,4} S{3,5}
S{1,4} S{2,4} S{3,4} Ir S{4,5}
S{1,5} S{2,5} S{3,5} S{4,5} Ir

� 0


.

Theorem 1: Gram Matrix Description of E N4 Membership

X = (〈vi,vj〉)Ni,j=1 ∈ E N4 with vi ∈ Sr−1 a spanning set if

and only if there is M ∈ B(N, r) with v>Mv = N2, where

v is the concatenation of the vi. If M[jk] are the blocks of

M , the degree 4 pseudomoments may be recovered as

Ẽ[xixjxkx`] = v>i M[jk]v`.

Constraints from Complementarity and Sum-of-Squares Eagerness

Theorem 1 gives a new SDP describing membership in E N4 , different from the pseudomo-

ment one. We examine this program through convex duality:max 〈vv>,M〉
s.t. M � 0,M[ii] = Ir ,M[ij] =M>

[ij]

 =
min Tr(D)

s.t. D � vv>,D[ij] = −D>
[ij]

 .
While the primal problem is as hard as the pseudomoment extension problem, it is easy to

match the optimal value in the dual problem using the partial transpose:

(vv>)[ij] = viv
>
j � PT(vv>)[ij] = vjv

>
i .

The partial transpose is studied in quantum information; its spectrum for a rank-one matrix

is known exactly. We build a dual optimizer D∗ := vv> − PT(vv>) + IN ⊗
(∑N

i=1viv
>
i

)
,

with Tr(D∗) = N2. By complementarity, M∗(D∗ − vv>) = 0, constraining M∗.

Theorem 2: Gram Matrix Certificate Constraints

If vi ∈ Sr−1, v is the concatenation of the vi, V has vi as columns, and M∗ ∈ B(N, r)
with v>M∗v, then all positive eigenvectors of M∗ lie in the subspace

VS =
{
vec(SV ) : S ∈ Rr×rsym

}
⊂ RrN .

The blocks of M∗ control the pseudomoments, so we find pseudomoment identities.

Corollary: Strong Subspace Identities

If Ẽ is a degree 4 pseudoexpectation over {±1}N , and P is the projector to the range of

Ẽ[xx>], then for all i ∈ [N] and p ∈ R[x1, . . . , xN]≤3,

Ẽ[xip(x)] = Ẽ[(Px)ip(x)].

These identities admit simple sum-of-squares proofs at degree 6, but seem difficult to prove

without our methods at degree 4—this is the phenomenon of eagerness.
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The Partial Transpose Operation

A schematic illustration of the partial trans-

pose operation of transposing each block of

a block matrix, which plays an important role

in our dual certificate construction.
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Feasibility of System of Subspace Identities (N = 25)

We observe a phase transition in the feasibil-

ity of the subspace identities (together with

the symmetry constraints, but no other con-

straints) when P is taken to be a projection

to a random subspace of dimension r . When

r is too small, no degree 4 pseudoexpectation

can have img(Ẽ[xx>]) = img(P ).

Equiangular Tight Frame Gram Matrices are (Usually) in E
N
4

Definition. Vectors v1, . . . ,vN ∈ Rr form an equiangular tight frame (ETF) if:

1. (Unit Norm) ‖vi‖2 = 1.

2. (Tight Frame)
∑N
i=1viv

>
i =

N
r Ir .

3. (Equiangular) For any i ≠ j, |〈vi,vj〉| = µ.

ETFs are rare and rigidly structured, with connections to strongly regular graphs, tight

spherical designs, Steiner systems, and other exceptional combinatorial objects.

Theorem 3: Membership in E N4 of Equiangular Tight Frame Gram Matrices

If v1, . . . ,vN ∈ Sr−1 form an ETF, and X = (〈vi,vj〉)Ni,j=1 is the Gram matrix, then

X ∈ E N4 if and only if N < r(r+1)
2 .

We obtain the degree 4 pseudomoments explicitly by solving the subspace identities, and

find that they are intricately structured and “fine-tuned” to satisfy positive semidefiniteness:

Ẽ[xixjxkx`] =
r(r−1)

2
r(r+1)

2 −N
(XijXk` +XikXj` +Xi`Xjk)−

r2
(
1− 1

N

)
r(r+1)

2 −N

N∑
m=1

XimXjmXkmX`m.

Some ETF Gram matrices (of simplex and Paley ETFs) provably belong to the difference set

E N4 \CN , and appear to be the first explicit examples of members of this set.
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Applications

New sum-of-squares inequalities. The only known family of

quadratic inequalities satisfied by degree 4 but not degree 2

pseudoexpectations appear to be the triangle inequalities,

(xi + xj + xk)2 ≥ 1 a xixj + xjxk + xixk ≥ −1.

We show that the triangle inequalities are but the first of a

larger family corresponding to maximal ETFs.

Violation of hypermetric inequalities. In the opposite

direction, we also show that the similar inequalities(∑
i∈I xi

)2 ≥ 1 for |I| ≥ 5, |I| odd

over CN , called hypermetric inequalities, are not satisfied by

all degree 4 pseudoexpectations.

MaxCut integrality gaps. Extending our result on ETFs

to some other two-distance tight frames gives the value of the

degree 4 sum-of-squares relaxation of MaxCut on associated

strongly regular graphs (for example, Johnson and Hamming

graphs). A direct computation of the MaxCut value shows

that in fact these exhibit a small integrality gap between the

true MaxCut value and the relaxation value:

MaxCut = (1+ εN)
|E|
2
<
(
1+ εN +Ω(ε2

N)
) |E|

2
= relaxation.

Questions for Future Work

Eagerness. Does the phenomenon of eagerness occur at

higher degrees of sum-of-squares, or with other identities?

Factorizing SDPs. When can feasibility for a more gen-

eral SDP (sum-of-squares over other constraints, or entirely

different problems) be described by another SDP on the Gram

vectors of the original variable? When does a complementary

slackness argument like ours give new constraints?

Random problems. We were motivated originally by relaxing

the Sherrington-Kirkpatrick model, where Wij ∼iid N (0,1).
This relates to whether X ∈ E N4 can have “most of its mass

near a random subspace.” The subspace identities preclude

this in some sense, but are they strong enough?
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‖X‖ ≤ N when

X ∈ B(N, r), so

v is a top eigen-

vector of X .

N ≤ r(r+1)
2 always holds; only four cases with equality are known.


